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Abstract

Future high-lift systems must achieve improved aerodynamic performance with simpler
designs that involve fewer elements and reduced maintenance costs. To expeditiously
achieve this, reliable CFD design tools are required. The development of useful CFD-

based design tools for high lift systems requires increased attention to unresolved flow
physics issues. The complex flow field over any multi-element airfoil may be broken
down into certain generic component flows which are termed high-lift building block
flows . In this report a broad spectrum of key flow field physics issues relevant to the
design of improved high lift systems are considered. It is demonstrated that in-flight
experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an
instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and

cost effective method by which both Reynolds and Mach number effects associated with

specific high lift building block flows can be investigated. These in-flight high lift
building block flow experiments are most effective when performed in conjunction with
coordinated ground based wind tunnel experiments in low speed facilities. For illustrative

purposes three specific examples of in-flight high lift building block flow experiments
capable of yielding a high payoff are described. The report concludes with a description
of a joint wind tunnel / flight test approach to high lift aerodynamics research.



I. Background and Motivation

The low speed/high lift performance of commercial transport aircraft is a primary

safety issue and also poses a major constraint regarding both sizing and overall

configuration performance. In a recent study by the National Research Council entitled,

"Aeronautical Technologies for the Twenty-First Century" (1992), the importance of low

speed, high-lift technology to the future of the United States commercial transport aircraft

industry was identified. The report concludes that for the United States aircraft industry to

retain its leadership role, it must reduce the acquisition and maintenance costs of future

designs.

a. High Lift System Design Issues for Transport Aircraft

High-lift systems are used in order to achieve the required take-off and landing

performance for commercial jet transports. The high lift system must provide both high

lift for landing and high L/D for take-off, climb out and noise reduction. The

aerodynamic performance of the high lift system also plays an important role in the

payload-range capability of an aircraft for a given field length.

The high lift system designer is faced with a demanding set of requirements and

constraints. The high lift system can be thought of as a subsystem of the wing. Its sole

purpose is to give the airplane the desired field performance. As in most system designs,

constraints are generated for subsystems by other groups. While the high-lift system is

essential for field performance of the airplane it does not set the geometric parameters of

the wing. Rather, the wing geometric parameters are set by required cruise performance.

The performance group determines the wing geometric characteristics to meet the

payload, range and cruise performance specifications. They along with the structural

design define most of the constraints on the system.

What are some of the constraints faced by the high lift system designer? As stated

earlier, cruise performance establishes many of the high lift design parameters. For

example, chord, thickness distribution, aspect ratio, etc. are determined by optimizing the

wing for cruise performance. The challenge for the high lift designer is then to come up

with an optimum design measured by merit functions based on weight and complexity to

meet the field requirements, takeoff and landing performance. This must be accomplished

with minimum effect on the cruise performance. In addition, the high lift system must be

as light as possible and of minimum complexity.

The high lift designer must determine the type of high lift devices to use, their

geometry, spanwise extent and the optimum flap and slat rigging (in terms of gap and

overhang). Structural considerations typically place constraints on the chordwise extent
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of thehigh lift system.Wing sparlocation(forwardandaft) aresetby wing stiffnessand
internal fuel volume requirements.This aspectis further complicated by the space

requiredfor internalstorageof themainlandinggear.Thespacewithin thewing required
by the main landing gearhasan impacton the size and location of the inboard flap.
Another challenge for the designer is the support and deployment mechanisms required to

move the slat and trailing flaps to their various positions during take-off and landing. The

support and deployment system again must be light weight and when retracted have a

minimum influence on the wing drag count. It should also be as simple as possible in

order to minimize maintenance costs.

Given the constraints mentioned above how does the high lift system designer

determine an optimum high lift system for a given wing? In the initial design phase the

designer typically makes use of two-dimensional data bases and CFD codes. As we shall

see, two dimensional CFD codes really have a quite limited predictive capability due to

limitations in our understanding of the viscous flow physics encountered in high lift

systems. The 2-D data bases available are obtained at Reynolds numbers well below

flight (which for a commercial transport aircraft can extend to 50 X 106, based on mean

aerodynamic chord). In addition, when a flap or slat is incorporated into a finite wing, the

performance is degraded due to three-dimensional effects. Three-dimensional flow effects

are associated with sweep, engine nacelle and pylon flow interactions and segmentation

of the slats and trailing flaps due to spanwise limitations. The designer must account for

these three dimensional effects in the design. At present 3-D design codes are neither

easy to use nor have they been shown to produce truly reliable results.

Because of limitations in CFD and the restricted availability of high Reynolds

number test facilities, the high lift designer is forced to rely on cut and try experiments

(usually at low Reynolds numbers) and intuition about the flow physics associated with a

finite wing high lift system. Due to its inherent complexity and the consequent emphasis

on empiricism in its design, the high-lift system has invariably been a large lead time

item in the development of new transport aircraft. For the current generation of

commercial transport aircraft, the high-lift system is also a notoriously high maintenance

cost item.

b. Flow Field Physics Issues for High Lift Systems

It is imperative that future high-lift systems achieve improved aerodynamic

performance with simpler designs that involve fewer elements and reduced maintenance

costs. To expeditiously achieve this goal, more reliable CFD design tools are required.

In the past, limitations in 2-D CFD capability for high lift systems stemmed both

from the geometric complexity of multi-element airfoils as well as limitations inherent in



the flow physics modeling.Great strides have been made in terms of grid generation

methodologies and in algorithm development so that the issue of geometric complexity

has been largely, if not completely, resolved. Unfortunately most of the flow field physics

issues associated with high-lift systems remain unresolved. This stems from the fact that

the flow over a multi-element airfoil is quite complex and includes numerous viscous

dominated effects for which our present understanding is extremely limited. For example,

despite the desirability of doing so, one cannot simply "dial in" a new Reynolds number

and repeat a high lift computation in order to study Reynolds number scaling issues.

Changing the Reynolds number requires the computational fluid dynamicist to go back

and examine the transition model or other physical assumptions built into the analysis.

This is because both the transition mechanism and multiple viscous interactions can

significantly change their character over the operating Reynolds number range of the

high-lift system. Our understanding of these viscous flow phenomena in three dimensions

is extremely limited.

Currently, CFD is capable of matching 2-D high-lift wind tunnel test results at fixed

Reynolds number only after the appropriate model constants have been properly adjusted.

Recourse to such "postdiction" is obviously unsatisfactory for a dependable high lift

system design tool. In order for CFD to assume its desired role in the high-lift design

process, the many unresolved flow physics issues that limit predictive capability must be

addressed.

c. Introduction to the High-Lift Building Block Flow Concept

The flow field over any multi-element airfoil may be broken down into certain

generic component flows which we will term "high-lift building block flows" (Thomas,

1995). These include: (I) laminar separation bubbles, (2) large-scale cove flow

separation (3) boundary layer-wake interactions (i.e. the confluent boundary layer), (4)

boundary layer development under influence of both arbitrary streamwise pressure

gradient and surface curvature, (6) multiple wake interactions, (7) wake development in

strong pressure gradients and with streamline curvature, (9) boundary layer transition,

and (10) relaminarization of turbulent boundary layers.

The fluid dynamicist will recognize the above list to contain some of the most

challenging unsolved problems of fluid mechanics. It is important to recognize that in a

multi-element airfoil flow field these building block flows are also strongly coupled.

Their interaction will determine the global structure of the high-lift flow which, in turn,

will determine the high lift system performance. This can give rise to extremely complex,

nonintuitive aerodynamic behavior. Indeed, this may well lie at the heart of so-called
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Figure 1. Viscous Interactions in a High Lift System

(from Mack & McMasters, 1992)

"inverse Reynolds number effects" which involve the unexpected deterioration of high-

lift system performance with increased Reynolds number. The existence of inverse

Reynolds number effects gives rise to fundamental questions about how one rationally

extrapolates wind tunnel test results to flight Reynolds number.

d. Advancing State-of -the Art in High Lift Aerodynamics

The coupling of high-lift building block flows in high-lift systems poses a real

impediment to gleaning useful flow field physics information from wind tunnel test data.

In effect, the coupling can often obscure the "cause" and "effect" observations which are

so essential in scientific experimentation. Consequently, it is the position of the authors

that the most useful approach to advance state-of-the-art in high-lift aerodynamics is to

perform benchmark experiments involving individual high-lift building block flows.

The objective of such research is clear: to develop an improved predictive capability

for individual high-lift building block flows. It seems quite naive to expect to predict the

flow over a multi-element airfoil if we cannot reliably predict the associated building

block flows! Understanding high-lift buiMing block flows individually is a prerequisite to

understanding their integrated behavior in a high-lift system. As used in the previous

sentence, the term "understanding" is taken as synonymous with the ability to perform

predictions that are made without prior knowledge of the experimental results but which

are in good agreement with experiment. We would argue that some of our major

limitations in high-lift design methodologies and confusion regarding extrapolation of

subscale wind tunnel test results to flight stem from a lack of fundamental research into

these key building block flows.



II. A Joint Wind Tunnel / Flight Test Approach:

A New Role for Flight Test in High Lift Research

The approach that needs to be taken to improve CFD capability in high-lift is to

develop a series of joint wind tunnel / flight test experiments to address fundamental flow

physics issues surrounding each of the building block flows cited above. Studying the

individual building block flows through coordinated wind tunnel and flight experiments

is probably the most expeditious and cost effective way of developing CFD capability for

high-lift system design. To attempt to compute the complicated viscous flow interactions

associated with lift production on three-dimensional multi-element wings without a better

understanding of the flow physics will at best produce solutions of dubious quality and

may, in fact, ultimately impede the acceptance of CFD tools by the design community.

Although the characteristic high-lift system building blocks listed above are obviously

interrelated, we must be able to first predict them independently before we can hope to

integrate their effects into a high-lift system flow field calculation. The investigation of

the high-lift building block flows should be performed in the spirit of providing relevant

flow field physics in a form that is useful for inclusion into current CFD design tools.

Flight Reynolds numbers for commercial transports (based on mean aerodynamic

chord) can extend to 50 X 106. As far as wind tunnel testing is concerned, achieving

high Reynolds number at subsonic speeds requires either a very large wind tunnel (which

poses problems in terms of fabrication cost and power consumption) or a more moderate

size tunnel in which the working fluid is under pressure and/or cooled. The use of

pressure and/or cryogenic tunnels has typically been reserved primarily for 2-D or semi

span tests seeking to optimize specific configurations. Disadvantages of the use of such

facilities for more fundamental work on building block flows includes high operational

costs, difficulty in model access, limitations on viewing access to the model which tend

to prevent the use of sophisticated laser based diagnostics like LDA or PIV. On the other

hand, low speed wind tunnels are inexpensive and allow an extremely wide variety of

sophisticated diagnostics to be implemented relatively easily. This provides the type of

detailed flow field information required in order to address key flow physics issues.

However, such facilities pose very real limitations in terms of Reynolds number

capability that often lead one to question both the relevance and generality of the results

obtained.

We feel that flight test could provide a key role in addressing Reynolds and Mach

number effects on high lift building block flows, thereby complimenting ground based

experiments. In the recent past, much of the high lift flight test research activity has



centered around the NASA Transport Systems Research Vehicle, a Boeing 737-100 (e.g.

van Dam et al, 1993). Research of this type has provided important flight data concerning

the performance of a particular high lift system. However, what we propose is an

alternate approach in order to investigate high lift building block flows.

Of particular interest in the context of this report is the utilization of flight tests to be

performed at NASA Dryden Flight Research Center in order to improve our

understanding of the flow physics of high lift building block flows. The proposed flight

tests would utilize the NASA Dryden Flight Test Fixture (FTF) carried on an F-15B

support aircraft in order to perform fundamental high lift building block flow experiments

which will compliment wind tunnel experiments at lower Reynolds number. The FTF is

essentially an instrumented ventral fin that effectively provides a "flying wind tunnel"

capability. The use of the FTF provides a novel and cost effective way to explore

Reynolds and Mach number effects associated with key high lift building block flows.

Advances in onboard instrumentation now allow relatively sophisticated flow field

diagnostics to be utilized in flight, thereby allowing data acquisition comparable to that

previously attainable only in low Reynolds number ground based facilities.

III. Sample High Lift Building Block Flow Experiments

Using the NASA Dryden Flight Test Fixture

In order to illustrate how the NASA Dryden Flight Test Fixture could be exploited in

order to address flow physics issues relevant to high lift building block flows, this section

outlines three potential experiments. Although meaningful experiments could be designed

and conducted for each of the high lift building block flows listed in section Ic., we

choose to illustrate the application of the NASA Dryden FTF by describing three

experiments involving:

• Boundary Layer Relaminarization

• The Confluent Boundary Layer

• Wake Development in Pressure Gradient

It is useful for the reader to keep in mind that although the primary focus of the

following sections will be on describing the flight test experiment itself, this should

ideally be performed in conjunction with complimentary ground based experiments.

a. High Lift Building Block Flow 1: Boundary Layer Relaminarization

1. Concerning Boundary Layer Relaminarization in High Lift Systems

It is well known that if a turbulent boundary layer is exposed to a sufficiently large

favorable pressure gradient the boundary layer can return to a laminar - like state and this
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processhasbeentermed "relaminarization" or "reverse transition". The relaminarization

process is associated with a thinning of the boundary layer as illustrated schematically in

Figure 2, a reduction in the bursting rate and the development of a new laminar sublayer

near the wall. Laws of the wake and wall cease to be valid and laminar - like mean

velocity profiles develop along with an associated reduction in skin friction coefficient.

Far from the wall, the relative turbulent kinetic energy decays because of local flow

acceleration but the absolute magnitude of the Reynolds stresses hardly change at all

through the flow acceleration. Narasimha and Sreenivasan (1973) have shown that the

relaminarized boundary layer can be described in terms of an outer stress free but

rotational layer riding over an inner laminar sub-boundary layer. The thinning of the

viscous layer is then a consequence of conservation of vorticity in the outer layer.

It has been speculated that relaminarization could play a significant role in the

performance of commercial high lift systems. There can be little doubt regarding the

important role played by leading edge flow physics in general. The question is whether

relaminarization is a part of this process. The flow over a swept wing will experience a

very strong favorable pressure gradient as it circumnavigates the leading edge from the

attachment line. In addition, Garner et al. (1991) present evidence which suggests that

j_ X

IV

Fully turbulent Quasi-laminar _ Reuan._tion

Constant _J Revere-

pressure "- [ transitional

Schematic of Turbulent Boundary Layer Relaminarization

from Narasimha and Sreenivasan (1973)
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failure of theprimary wing leadingedgeflow to relaminarizeat largeReynoldsnumber
may be responsible for adverse Reynolds number effects on CLmax. In-flight

experimentson theNASA TransportSystemsResearchVehicle(Boeing737-100)by van
Dam et al (1993) provide some experimental evidence based on Preston tube

measurementswhich suggestthe occurrenceof boundarylayer relaminarizationon the

upperslatsurfaceof theBoeing737.
The most widely used criterion for the occurrenceof relaminarization is the

parameterK (Launder andJones,1969)which is defined,
K = v__ (1)

where U e is the local inviscid velocity, v is the kinematic viscosity and _ is a

characteristic length scale associated with the flow acceleration which is defined as,

= Ue (2)
dU e I ds

where s is the spatial coordinate describing the local inviscid streamline. Combining eqn.

1 and eqn. 2 we have,

K- v dU e (3)

ds

Laboratory experiments have shown that relaminarization is likely when K > 3 X 10 -6.

Measurements by van Dam et. al. (1993) on the NASA Boeing 737-100 show peak K

values on each of the five elements of the high lift system in excess of this value, further

suggesting the possibility of relaminarization in high lift systems.

For flow over a 2-D body of chord length c where coordinate x denotes the distance

over the surface of the body, it may be shown that the relaminarization parameter can be

expressed as,

K=-__ _ (I_Cp) 3/2 d(x/c)

where Rec denotes the chord Reynolds number and Cp is the body surface pressure

coefficient. It is apparent from (1) through (4) that K is determined completely from the

inviscid external flow and can therefore be estimated from surface pressure

measurements. Equation (4) also shows a tendency for the K value to be reduced with

increased chord Reynolds number.

One troubling aspect of the relaminarization parameter is that it does not contain any

information regarding the duration over which the flow is exposed to the favorable

pressure gradient. Since there must be some finite time scale inherent to the

relaminarization process, the K parameter alone seems an incomplete criterion. However,
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an even more fundamental and troubling aspect is the recognition that the

relaminarizationcriterion containsno boundarylayer parametersat all! Indeedwhen

written in theform of equation(4) it is very difficult to seewhy chordReynoldsnumber

shouldbearelevantscalingparameter.
Therehavebeensomeattemptsto includeboundarylayer parametersin acriterion

for relaminarization . For example, Patel and Head (1968) suggestthe following

parameter,Ap, defined as,

/" C x,-3/2

where Cf is the skin friction coefficient and it was noted that the log-law of the wall

behavior disappears near Ap = - 0.025.

Laboratory experiments suggest that the boundary layer relaminarization process is

not due to either dissipation or negative turbulence production. However, in all cases

where relaminarization has been observed to occur, order of magnitude estimates show

that the parameter,
dP 6

A .... , (6)
ds "cw

is very large. Here 8 is the boundary layer thickness and z"w is the wall shear stress. A

large value of A implies that the pressure gradient is quite large in relation to the stress

gradient in a relaminarizing flow. In other words, the Reynolds stress field does not

change rapidly enough to respond to the external flow acceleration. This suggests the

possibility of an alternate basis for a relaminarization criterion.

In order to illustrate how boundary layer relaminarization could play a role in

inverse Reynolds number effects in high lift systems, consider the following speculative

scenario: From the attachment line studies by Poll (1979) and the flight test results by

van Dam et al (1993) it may be expected that for swept wing flows at all but the lowest

Reynolds numbers the attachment line boundary layer is turbulent. As it circumnavigates

the nose of the airfoil, the flow accelerates and consequently the boundary layer is

initially exposed to a strong favorable pressure gradient. If this negative streamwise

pressure gradient is strong enough as measured by the parameter K then relaminarization

can occur. The effect of the relaminarization process will be to reduce the thickness of the

boundary layer, and this is favorable for CLmax. Perhaps more importantly, it will also

serve to move the location of onset of confluence with the slat wake downstream. The net

effect will be to move the separation location on the primary airfoil aft. It has been

shown (Garner et al, 1991) that as the Reynolds number increases, K is reduced to such a

level that relaminarization may not take place. Thus, for sufficiently high Reynolds

13



numbers,relaminarizationof the leadingedgeboundarylayermay suddenlycease.As a

resultthe leadingedgeboundarylayerflow thickens,the locationof confluencebetween
the slatwake andturbulentboundarylayeron thewing movesforward andgives rise to

rapid mixing and the generationof a very thick viscouslayer that will readily separate
due to the adversepressuregradientaft of the primary airfoil pressurepeak. In this

mannerCLmaxmay be limited at high Reynoldsnumbers. It should be pointed out,

however, that the scenariojust describedsuggeststhat once relaminarization is lost

CLmaxwouldcontinueto dropwith further increasesin Reynoldsnumber.In reality some

experimentshaveactuallyshowna tendencyfor CLmaxto recoverandagainincreaseat
the highestReynoldsnumbers. This suggeststhat the descriptionof inverseReynolds
numbereffectsdescribedabovemay be incompleteandadditional factorsin the leading

edgeflow physicsneedto beaccountedfor.
It's importantto point out thathardevidencefor theoccurrenceof relaminarizationin

actualhigh lift flow fields is still lacking.Althoughthe737flight testexperimentsof van
Dam et al (1993) suggestthe possibility of relaminarization, most work involving
relaminarizationhasbeendoneat low Reynoldsnumbersin academicwind tunnels.In

the next section we describebasic boundarylayer relaminarizationexperimentsto be

performedin flight usingthe FTF experimentalplatform.This will allow afundamental
investigation of relaminarization at Reynolds numbers and pressure gradients
characteristicof thoseoccurringin high lift systems.

2. In -Flight Relaminarization Experiments Using the FTF

The in-flight experiments will involve examination of the conditions giving rise to

relaminarization of a turbulent boundary layer which develops on the FTF fixture. The

favorable pressure gradient and associated local flow acceleration will be induced by an

airfoil placed off-surface as shown schematically in Figure 3. In this figure the leading

edge of the airfoil is located near the mid chord of the FTF platform so that flow

acceleration commences near this location. The relaminarization process would take

place on the FTF surface in the region of flow acceleration under the off surface airfoil.

The boundary layer on the FTF would retransition at some point after the strong

favorable pressure gradient is removed. Note, however, that any possible interaction

between the airfoil wake and FTF boundary layer downstream of the of the airfoil is of no

importance as far as this relaminarization study is concerned.

For the arrangement shown in Figure 3 lateral loads are small except perhaps for

flight trajectories which involve large sideslip. At any rate, these effects could always be
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and Boundary Layer Fence
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Figure 3. Schematic of the FTF Relaminarization Experiment

minimized by mounting a dummy airfoil on the opposite side of the FTF in order to

provide symmetry.

In order to perform the experiment it is necessary to develop a turbulent boundary

layer on the FTF surface. The FTF will 15e equipped with an elliptic leading edge with

distributed roughness in order to expedite boundary layer transition. Fences will be used

to insure the development of a nominally two-dimensional turbulent boundary layer near

the onset of favorable pressure gradient. A symmetric airfoil whose leading edge is

located near the mid-chord of the FTF is positioned off-surface and this distance is fully
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adjustable. By varying the airfoil - FTF surface gap width, the magnitude and duration of

the favorable pressure gradient imposed on the boundary layer may be controlled.

Streamwise and spanwise arrays of surface pressure taps on the FTF surface will allow

documentation of the imposed pressure gradient dP/dx and evaluation of the associated K

parameter. It is desirable to perform the experiments for K values both above and below

the 3 X 10 -6 threshold value. By selective positioning of the airfoil for a given flight

speed it is possible to set appropriate K values.

An array of flush surface mounted hot - film probes on the FTF will be used to assess

whether relaminarization has occurred. For cases where relaminarization is indicated,

profiles obtained via off surface hot-film and/or pitot tube rakes will be used to assess the

thickness and characteristic profile shape of the boundary layers.

Computations using panel methods indicate that the experimental arrangement

shown in Figure 3 is capable of producing large suction pressures on the FTF surface,

similar to those that characterize the leading edge of high lift systems. For a given flight

Mach number, the limitation in local flow acceleration is ultimately set by the need to

avoid reaching local sonic conditions. A computed surface pressure distribution is shown

in Figure 4 for a NACA 0010 airfoil whose centerline is placed a distance Az / c = 0.036

above the FTF surface (where c is the chord of the FTF platform). This pressure gradient

will be imposed on a high Reynolds number turbulent boundary layer. For example,

assuming a pressure altitude of 10, 000 ft., and flight Mach number of M = 0.25, the

Cp

1 p

0 iOOo •

-1.

-3

-4

-5

--6

0 0.1 0.2 0.3 "0.4 0.5 0.6 0.7 0.8 0.9

x I C (position on FTF surface)

Figure 4. Example Surface Pressure Distribution on the FTF
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Reynolds number based on the length of the FTF platform is over 13 million while the

local Reynolds number, Rex, at the onset of the flow acceleration shown in Figure 4 will

be approximately 6.5 X 106. It is in this regard that the FTF possesses real advantages

over ground based wind tunnel experiments.

For the geometry shown in Figure 3 equation (4) applies and one notes that for a

given pressure distribution on the FTF surface a range of K values follow depending

upon the chord Reynolds number and hence, the flight speed of the FTF platform. This

seems questionable physically and again calls into question the relevance of K as an

indicator of relaminarization for high lift flows. It will be of great interest to document

whether K is indeed the proper correlating parameter for occurrence of relaminarization

on the FTF platform.

It is important to point out that the flight envelope of the FTF platform allows

relaminarization experiments to be performed over the range of Reynolds and Mach

numbers relevant for high lift systems.

The objectives of the relaminarization experiments are to address the following

questions:

• For the Reynolds numbers and external pressure gradients characteristic of high lift

flows, is K a reliable criterion for occurrence of relaminarization? Can a more suitable

scaling parameter involving boundary layer characteristics be developed from the

experimental results?

• What is the effect of Reynolds and Mach number on relaminarization?

• What is the characteristic response time of the turbulent boundary layer

relaminarization process ? How long must the flow be exposed to the imposed flow

acceleration for relaminarization to occur?

• Is the nature of the relaminarization process observed in flight different from that

observed in low speed academic wind tunnels? What is the character of the boundary

layer during relaminarization?

• Based upon the FTF flight experiments, is relaminarization a likely player in

leading edge flow physics for actual high - lift systems? If so, how can it be modeled?
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b. High Lift System Building Block Flow 2: The Confluent Boundary Layer

1. Concerning Confluent Boundary Layers

Despite the important role played by confluent boundary layers in high lift system

performance, our understanding of the physics associated with this flow is actually quite

limited, especially at high Reynolds numbers.

Experimental work on confluent boundary layers generally falls into two broad

categories. There have been studies on specific 2-D high lift configuration models in both

low speed and pressure tunnels. These studies have typically been carried out as part of a

high lift system configuration optimization and performance testing program. As such,

the focus is often not on the confluent layer itself but rather the resulting integrated

aerodynamic forces. Measurements of the confluent boundary layer typically involve

total head tube surveys which provide mean velocity profiles. In addition, such studies

include effects attributable not only to the confluence itself but also pressure gradient and

streamwise curvature.

More fundamental studies of confluent boundary layers have been performed and

reported in a series of papers by the group at Cambridge University (Zhou and Squire

(1983, 1985), Agoropoulos and Squire (1988) and Moghadam and Squire(1989)). These

experiments have primarily examined the interaction between a wake generated by either

a flat plate or symmetric airfoil and the neighboring wind tunnel wall boundary layer. In

each case both the airfoil and tunnel wall boundary layers were artificially tripped to

produce turbulent flow. Such studies have shown that the level of turbulence in the wake

has a very strong influence on the wake / boundary layer interaction. In cases where there

is strong vortex shedding from the wake generating airfoil, the mixing in the interacting

flow is found to be quite strong. The resulting confluent boundary layer is much thicker

than the turbulent boundary layer would be in the absence of the upstream wake-

generating body. Cases such as these also presented the greatest difficulties in

computations since they involved counter-gradient momentum transport which violates

standard eddy viscosity-based turbulence models. That is, in the initial region of the

interaction, the shear stress and mean velocity gradient normal to the wall can have

opposite sign which implies that the effective eddy viscosity is negative! Obviously such

flows cannot be modeled with any type of standard eddy viscosity model. Further, the

counter gradient transport tends to occur in the initial stages of the wake/boundary layer

interaction which has the effect of "contaminating" numerical solutions obtained via

streamwise marching methods. Even in regions without counter-gradient transport, the

nature of the interaction is quite complex and the model constants are not known a priori.
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Experiments have also shown that the effect of an adverse pressure gradient on the

wake/boundary layer interaction is to accelerate the thickening of the confluent layer.

This will obviously have important implications for high lift systems.

The confluent boundary layer "model flows" described above simulate many of the

essential features of the leading edge confluent boundary layer characterizing commercial

high lift systems. However, because the experiments described above were performed in

low speed academic wind tunnels, the Reynolds number based on the chord of the wake

generating body was quite low; typically in the range of 0.2 - 0.3 million. This may be

compared, for example, to the Reynolds number based on slat chord for the Boeing 737-

100 which is nominally in the range of 1.8 - 3.4 million with a corresponding Mach

number range of 0.2 - 0.33. Flight test provides an ideal opportunity to address the effect

of Reynolds number and Mach number on confluent boundary layer structure, thereby

complimenting results from ground based experiments.

2. In -Flight High Reynolds Number Confluent Boundary Layer

Experiments Using the FTF

The experiment using the FTF will provide measurements of the effect of Reynolds

and Mach number on confluent boundary layer structure in the absence of surface

curvature. The geometry is similar to that employed in the cited studies by the group at

Cambridge. However, an important difference will be that the FTF experiments will be

performed at significantly higher Reynolds and Mach numbers. Comparison of the

resulting confluent boundary layer flight data with complimentary measurements from

low speed wind tunnel facilities will allow an objective assessment of the effects of

Reynolds number and Mach number on the nature of wake - boundary layer interactions.

There certainly appears to be a general consensus that both Reynolds and Mach number

effects are important. However, there seems to be very few specifics regarding in what

ways the confluent boundary layer structure is likely to differ in high and low Reynolds

number experiments. Comparison of low speed wind tunnel data for confluent boundary

layers with FTF flight data will provide important information for modelers in assessing

Reynolds and Mach number effects and incorporating them into new predictive models.

Figure 5 presents a schematic of the FTF confluent boundary layer experiment. The

boundary layer on the FTF surface is artificially tripped by use of distributed roughness

near the leading edge. As shown in the figure a wake generating airfoil is located off the

FFF surface just downstream of the FTF leading edge. The airfoil wake will widen and

eventually merge and interact with the turbulent boundary layer on the FTF surface. The

19



Airfoil Support
and Boundary Layer Fence

Leading Edge FTF Platform (top view)

Airfoil Support
Wake Generating and Boundary Layer Fence

2-D Body.1 _\ _nfluent_Boundary Layer

Boundary Layer Trip
FTF Platform (side view)

Figure 5. Schematic of FTF Confluent Boundary Layer Experiment

location of onset of this confluence will be determined by the wake widening and

boundary layer growth. However, the vertical positioning of the wake generating body

above the FTF surface provides a degree of user control over the location of confluence

and insures a sufficiently long streamwise run of confluent layer for the experiment.

Fences can also be used to provide a nomiffally 2-D confluent boundary layer interaction.

Unlike the previously described in-flight experiment, the off surface airfoil in Figure 5

will not give rise to relaminarization. Computations using panel methods show that by

using an airfoil of either sufficiently small thickness ratio or of the appropriate camber,

the local flow acceleration on the FTF surface can be kept small.
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Consider a wake generatingbody whosechord length is 20% that of the FTF

platform. Assumingthat it is flown at 10,000 ft. pressurealtitude at Moo= 0.3, the

resulting Reynolds number based upon the chord of the wake generating body would be

approximately 3 X 106. This Mach number - Reynolds number combination provides a

very good match to actual high lift systems (like the NASA Boeing 737-100 Research

Vehicle). An advantage of this approach over testing in an actual high lift system is the

ability to decouple effects due to confluence alone from those due to streamwise

curvature and pressure gradient.

By flying the appropriate altitude-flight speed combinations within the F-15B

envelope, the Reynolds number and Mach number may each be varied over a range

appropriate for high lift systems and the resulting effect on the confluent boundary layer

structure assessed. Increased altitude for a fixed flight speed has the effect of increasing

the Mach number and decreasing the Reynolds number. A fixed Reynolds number

experiment in which Mach number is varied could be performed by appropriately

increasing the flight speed for each selected altitude increase. Conversely, by decreasing

flight speed by the appropriate amount for selected increases in cruise altitude, an

experiment could be performed at a fixed Mach number and varying Reynolds number.

The objective of such experiments would be to assess the structure of the confluent

boundary layer as either Mach number or Reynolds number is varied over a range

appropriate for high lift systems.

It is desirable to be able to investigate the interaction of both low and comparably

high momentum deficit wakes with the turbulent boundary layer on the FTF surface. To

this end, the geometry of the wake generating body can be varied in the experiments.

Initial work, for example, might involve a low momentum deficit wake generated by a

flat plate or symmetric airfoil with small thickness ratio. Higher momentum deficits

would be investigated by using appropriately cambered airfoils of larger thickness ratio.

In recognition of the fact that the slat wake in a high lift system typically exhibits a

high degree of cross-stream asymmetry, it is desirable to be able to control the degree of

initial wake symmetry. In this manner the interaction of symmetric and asymmetric

wakes with the FTF boundary layer could be investigated. This could be accomplished

by using boundary layer control in the form of trips placed on one side of the wake

generating body. Use of a trip on one side of the wake generating body would give rise

to a disparity in top and bottom momentum thicknesses at the trailing edge, thereby

leading to an initially asymmetric wake.

In order to characterize the confluent boundary layer for a particular Reynolds and

Mach number combination, it is desirable to document the streamwise evolution of the
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mean velocity profiles on the FTF surface. These mean profiles are essential for

establishingboth thelocationof onsetof confluenceaswell asthestreamwisegrowthof
theconfluentlayer.Theprofileswouldbeusedto obtainkey integralparameterssuchas
momentumthickness,0(x), displacementthickness,_i*(x) and shapefactor H. Mean

velocity profile measurementscanbemadeoff surfacewith hot-film probeor pitot tube
rakes.The useof X-film probeswould also allow both thenormal andReynoldsstress

variation through the confluent layer to be documented.These measurementsare

importantfor advancingturbulencemodelsfor confluent layers.For example,the local
turbulenceproductionterm, -uv cgU/cgy, can be obtained from measurement of both

Reynolds stress and mean velocity profiles. Another required quantity in terms of

characterizing the confluent boundary layer structure is the local skin friction coefficient.

This can be obtained by performing Preston tube measurements at selected streamwise

locations.

c. High Lift Building Block Flow 3: Wake Widening and Structure in Arbitrary

Pressure Gradient

1. Relevance to High Lift System Performance

A key parameter in the performance of a high-lift system involves the wake

development from upstream elements. For example, the growth rate of the slat wake will

determine, in part, the location of onset of confluence with the main element boundary

layer. Even in cases where there is no strong confluence on the main element, the slat

wake will have the effect of moderating the surface pressure peak on the trailing flap(s).

Flap pressure peak moderation helps maintain flow attachment and improves CLmax. The

degree of flap surface pressure peak moderation is related directly to the wake width. In

general, the thicker the wake, the more the flap pressure peak is moderated. This is due to

an associated streamline displacement effect. Consider, for example, Figure 6 which

shows the effect of the main element wake widening rate on downstream flap element

surface pressures. The wake widening was arbitrarily manipulated in the computation and

serves to demonstrate the important effect wake growth rate can have on the aft element

surface pressure distributions.

Another example of the profound influence of wake widening on high-lift performance is

shown in Figure 7, which is taken from Lin, Robinson and McGhee (1992). This figure

shows the lift coefficient variation with angle of attack for a two-dimensional single-flap,

three-element, high-lift system at stowed chord Reynolds numbers of 5 X 106 and 9 X

106. A spanwise array of sub-boundary layer-scale surface vortex generators positioned

near the quarter-chord position of the trailing flap was used to maintain attached flow

over the flap. Figure 7 shows that the benefit of this is apparent only at moderate angles
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Figure 6. Effect of Wake Widening on Flap Surface Pressure Moderation

(from Garner, Meredith and Stoner, 1991)

of attack where lift is clearly augmented. Flow attachment is maintained at high angles of

attack even without the use of vortex generators. This is due to the fact that at the highest

angles of attack prior to stall, the main element wake thickens appreciably and has the

effect of suppressing the trailing flap surface pressure peak. As a consequence the flap

boundary layer flow remains attached. This serves as an example of the somewhat

surprising and non-intuitive behavior encountered in high lift systems as a consequence

of the viscous flows involved.
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In additionto issuesrelateddirectly to wakewidening,Smith (1975)notesthat off

surface flow reversalcan occur if the wake encountersa sufficiently strong adverse

pressuregradient. This has beentermedby someas "wake bursting". Indeed some
measurementsfrom theLTPT (e.g.Chinet al, 1993)showwakeprofilesover thetrailing

edge flap of a Douglasthree elementairfoil that appearvery close to exhibiting off
surfacereversal.

2. In -Flight Experiments on Wake Widening in Pressure Gradient.

Unlike the often studied case of the symmetric wake in zero pressure gradient for

which the underlying structure and model constants are well known, our understanding of

the physics of wakes which develop in arbitrary pressure gradients is poor. Due to its

importance in high-lift systems, we must be able to reliably compute wake growth under

arbitrary pressure gradient conditions. Wake development in high-lift systems will likely

depend upon the following factors (and possibly their interaction):(1) pressure gradient,

(2) the degree of initial wake asymmetry, (3) streamline curvature and (4) unsteady

effects.

It is desirable to form joint ground based and in-flight experiments whose goal it is to

address the following questions:

• What is the structure and growth rate of wakes under arbitrary pressure gradient

conditions? How is wake widening related to the imposed streamwise pressure gradient

dP / dx?

• What role does initial wake asymmetry play in wake growth? Do symmetric and

asymmetric wakes develop differently in a given adverse pressure gradient condition? If

so, how and why?

• How do Reynolds number and Mach number effects affect wake growth and

structure?

• Does off surface flow reversal play a significant roll in high-lift systems?

Figure 8 presents a schematic of one possible arrangement for wind tunnel

experiments to investigate wake structure in pressure gradient as envisioned by the

authors. The 2-D wake experiments would be performed in low speed wind tunnel

facilities. By using the adjustable tunnel wall contour shown in Figure 8, the boundary

layer development on side 1 of the wake generating plate can be controlled through the

imposed pressure gradient. As shown in the figure, when the boundary layer momentum

thicknesses on opposite sides of the plate at the trailing edge are disparate, 01 _: 02, an

initially asymmetric wake is generated which will subsequently interact with the adverse
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pressure gradient in the diverging section. Conversely, by relaxing the side 1 wind tunnel

wall, 01 = 02, and the wake is initially symmetric. In this manner the role of adverse

pressure gradient on both symmetric and asymmetric wakes can be established. The

degree of initial asymmetry would be selected to approximate that observed in slat wakes

on actual high-lift systems. By adjustment of the diverging section sidewalls shown in

Figure 8, the wake may be exposed to a variety of adverse pressure gradients of varying

strengths. In this manner the response of both the wake's mean flow structure and

turbulence quantities to the imposed pressure field will be determined. Flow diagnostics

would involve detailed two component LDA traverses. The resulting LDA database

would be particularly useful for Reynolds averaged Navier-Stokes modeling efforts since

it provides not only benchmark data for model validation, but also more fundamental

quantities like local turbulence production, mixing lengths, as well as terms in the

equation for the wake energy budget. Similarly, by utilizing particle image velocimetry

(PIV) techniques, experiments can be performed which will suggest how the essential

aspects of wake unsteadiness can be incorporated into current models. For example, by

application of the Proper Orthogonal Decomposition to the PIV results, one may find that

the essential aspects of the unsteady character of the wake is captured by only a few low

order modes. Such a result would have important implications for modeling.

Adjustable Tunnel Wall Contour

Side 1

Wake Generating Plate

Side 2

Wind Tunnel Wall

Ut.e. dP/dx>0

Ilx

Ut.e. . _ Divergent Section
_1_ (adjustable)

Figure 8. Wind Tunnel Experiment to Study Wake in Pressure Gradient

In order to address Reynolds and Mach number scaling issues related to wake

development in pressure gradient, coordinated in-flight experiments using the NASA

Dryden FTF would be used. A schematic of the flight test experiment is shown in Figure

9. In this arrangement, a 2-D wake generating body is positioned off the FTF surface as in
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the confluent boundary layer experiment. One important difference is that in this

experiment the distance between the wake generating body and the FTF surface is

sufficiently large so that no confluence with the boundary layer on the FTF surface is

allowed to take place. This may be facilitated by not tripping the FTF surface boundary

layer as in the previous experiments and perhaps by use of passive laminar boundary

layer control on the FTF surface. It is the focus of this experiment to examine the growth

of the upstream airfoil wake in response to variations in pressure gradient. The pressure

2-D wake Downstream off surface body

--J .J Fence and airfoil supportgenerating

_ _. body J _1' _ Wake in pressure

_lc_ealng _ _ ../'_'_ gradient

FTF (side view)
2-D wake

generating Fence and airfoil support
Downstream off surface body

body

Instrumented
FTF surface

FTF (top view)

Figure 9. Schematic of In-Flight Wake in Pressure Gradient Experiment
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gradientis imposedby acustomizedairfoil contouralsomountedabovetheFTF surface
but farther downstream.As thewakefrom the upstreamairfoil flows betweenthe FTF

surfaceand the downstreamairfoil contour it will first encountera favorableand then

adversepressuregradient (as doesthe slat wake of a high lift system).For a given

geometryof thedownstreamoff surfacebody,thepressuregradientenvironmentmaybe

controlledby adjustingthe orientation(i.e. angleof attack)of the downstreambody. In
orderto minimize lateral loadson theFTF platforma dummyairfoil couldbe placedon

theoppositesideof theFTF in orderto preservesymmetry.
Since the primary focus of the experiment is to documentReynolds and Mach

numbereffectsonwakewideningin pressuregradientenvironments,thewakewidth will

bemonitoredatpreselectedstreamwiselocations,particularlyin theadversepressure

gradientregion.It is possibleto do this intrusivelyusing,for example,pitot tuberakesor

hot-film proberakes. An alternateapproachmightbe to uselaserimagingsimilar to that

employedin flight testexperiments involving transversegasjets by Karagozianet al.
(1996). In this technique,nitrogen gas is seededwith iodine vapor for visualization

purposes.The N2- I2mixturewouldbepassedthroughaflow injectionslit on thesurface

of thewakegeneratingbody.A sheetof laserlight from apulseddiodepumpedNd:YAG
laserat 532.25nm wavelengthwould thenbeusedto illuminatethe wake.Imagesof the

wakemaythenbecapturedby a highspeedgatedvideocamerasynchronizedto thelaser

pulserate. Providedthat a convenientlengthscaleis includedin the video frames,the
wakewideningcouldthenbeobtainedfrom videoimages.

IV. Summary and Recommendations

The development of a useful CFD-based design tool for high lift systems requires

increased attention to unresolved flow physics issues. Only through an improved

understanding of "high lift building block flows" which are an integral part of the

commercial high lift system can a rational design strategy be developed. In this report we

have considered a broad spectrum of key flow field physics issues relevant to the design

of improved high lift systems. This report demonstrates how in-flight experiments

utilizing the NASA Dryden FTF carried on an F-15B support aircraft can provide a novel

method by which both Reynolds and Mach number effects associated with specific high

lift building block flows can be investigated. In-flight experiments like the three

examples described in this report provide a cost effective and, to this point, completely

unexplored way of improving our understanding of high lift system flow physics issues at

realistic Reynolds and Mach numbers. In many ways this "flying wind tunnel" approach

appears more attractive than performing similar experiments in pressure and/or cryogenic
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wind tunnels.These in-flight high lift building block flow experimentswill be most

effective when performedin conjunctionwith coordinatedgroundbasedwind tunnel

experimentsin low speedfacilities. This unified approachseemsto be an expeditious
way to advancestate-of-the-artpredictivecapabilityfor high lift systemdesign.

It is recommendedthat a joint wind tunnel/ flight test partnership between NASA

Dryden Flight Research Center and Hessert Center for Aerospace Research at Notre

Dame be established in order to address unresolved issues pertaining to high-lift building

block flows. Although any of the building block flows are amenable to this approach, we

believe that each of the example experiments outlined in this report are particularly

capable of yielding a high payoff from the proposed joint wind tunnel / flight test

approach. One of these high lift building block flows should be selected for investigation

based on joint discussions between NASA Dryden and Notre Dame personnel in a phase

2 effort. A primary objective of the phase 2 research effort would be to demonstrate the

utility of the joint wind tunnel / flight test approach in advancing state-of-the-art high lift

aerodynamics. For the particular high lift building block flow selected, this research

would involve the detailed design and implementation of a joint wind tunnel and flight

test program. The wind tunnel experiments would be carried out in facilities at Notre

Dame and coordinated in-flight experiments using the FTF platform would be performed

at NASA Dryden Flight Research Center. The flight test program would be used to

address key Reynolds and Mach number scaling issues related to the selected building

block flow. The wind tunnel experiments would be used to provide complimentary
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benchmarkLDA and PIV data. The wind tunnel work would also serve to support

NASA Drydenin thedevelopmentof improvedmeasurementtechniquesanddiagnostics

for theFTF experiments.An illustration of the envisionedNASA Dryden / Notre Dame

high lift partnership is shown in Figure 10.
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